AWS setup

2017.09.28 register AMS account ,it is free till 2018.09.27

AWS free Tier https://amazonaws-china.com/cn/free/?sc_ichannel=ha≻_icampaign=free-tier≻_icontent=2234

Get started from here :http://course.fast.ai/start.html

Platform: AWS t2.micro instance ,which is free.

AWS /aws.amazon.com

AWS Graph console: console.aws.amazon.com

command interface :

choose EC2 instanc:

https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2

Step 1: Choose an Amazon Machine Image (AMI):

  • Deep Learning AMI Ubuntu Version 2.3_Sep2017 - ami-d6ee1dae

Configure T2 instance:

share files: http://files.fast.ai/

pip install kaggle-cli

brew install awscli

aws configure  #input access key & Secret access key

cdfast

./setup_t2.sh  #t2-micro is free

Output:

True
Waiting for instance start...

All done. Find all you need to connect in the fast-ai-commands.txt file 
and to remove the stack call fast-ai-remove.sh
Connect to your instance: 
ssh -i /Users/davidmeng/.ssh/aws-key-fast-ai.pem [email protected]
#connect to AWS from local
$aws-ssh

ubuntu@ip-10-0-0-12:~$ nvidia-smi   #check GPU ; Since t2-micro has no GPU

#launch jupyter notebook
jupyter notebook


#Open the browser with the [IP]:8888 
#IP 出现在ssh -i
e.g. http://34.215.132.142:8888
#pwd: dl_course

nbs -> new[conda]

#if you want to close the instance,go to the AWS console :
https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#Instances:

# Action -> instance State ->stop

aws alias

  1. add aws-alias.sh to ~/.zshrc and reload it.
  2. get t2.micro IP
  3. aws-get-t2
    aws-start  #display IP
    ssh ubuntu@$instanceIp
    
  4. alias
T2.micro
34.208.138.154:8888

T2.xlarge
34.215.132.142:8888

results matching ""

    No results matching ""