Data Scientist Resource

机器学习背影,历史,流派介绍

牛B教程,贴心指引,还free:

学习方法,资源

http://www.open-open.com/lib/view/open1456751835546.html利用Python,四步掌握机器学习

https://github.com/dataquestio/data-science-blogs

http://lib.csdn.net/BaiHuaXiu123/216033/chart/人工智能之机器学习图谱中级机器学习图谱

*如何快速成为数据分析师https://www.zhihu.com/question/29265587

数据科学家自我修养 a way to data scientisthttp://mooc.guokr.com/post/604911/

http://datasciencemasters.org/
开源数据科学

DataSet

Algrithm ,算法比较,算法选择

种类算法分析对比:https://static.coggle.it/diagram/WHeBqDIrJRk-kDDY

算法选择KKhttps://www.52ml.net/15063.html

ML - andrew NG 课程的总结笔记:

http://blog.csdn.net/u012717411/article/details/50531678http://blog.csdn.net/column/details/machine-learning1.htmlhttps://www.yalewoo.com/andrew_ng_machine_learning_notes_11_photo_ocr.htmlhttp://www.holehouse.org/mlclass/

http://ciml.info/

https://github.com/jdwittenauer/ipython-notebookspython 实现习题https://github.com/kaleko/CourseraML. Python implement exercisehttps://github.com/JWarmenhoven/Coursera-Machine-Learninghttp://www.johnwittenauer.net/machine-learning-exercises-in-python-part-1/

Sklearn

https://muxuezi.github.io/categories/machine-learning.html中文

<商务经济统计学> Web analysis 2.0

练习:http://www.scipy-lectures.org/https://jmetzen.github.io/2015-01-29/ml_advice.html

程序猿的数据科学与机器学习实战手册:https://github.com/wxyyxc1992/DataScience-And-MachineLearning-Handbook-For-Coders

Numpy + Pandas

https://github.com/jasonding1354/pyDataScienceToolkits_Base

Pandas :

http://pandas.pydata.org/pandas-docs/stable/index.html

https://github.com/David9998/pydata-book. Python for data analysis source code

scipy :

https://docs.scipy.org/doc/scipy/reference/index.html

大数据集 处理

Sklearn 增量学习 -> 针对 大数据量

PySpark + Scikit-learn = Sparkit-learn

https://github.com/lensacom/sparkit-learn

很好的ML练习题:

http://blog.jobbole.com/85680/

https://github.com/wxyyxc1992/DataScience-And-MachineLearning-Handbook-For-Codershttps://zhuanlan.zhihu.com/p/23339926https://github.com/hangtwenty/dive-into-machine-learning****

https://www.datacamp.com/community/tutorials/scikit-learn-tutorial-baseball-1#gs.mmtG4yw
datacamp ,在网页上直接submit code 练习 Exploratory data analysis (EDA) (Statistical Thinking in Python (Part 1)) =>

https://www.datacamp.com/community/tutorials/exploratory-data-analysis-python

可视化:

Home.iitk.ac.in/~jayeshkg/

https://www.douban.com/group/topic/44748285/史上很强的 coursera 分享

https://turi.com/learn/translator/pandas vs R vs GraphLab

在github 找资料, 学新东西去官网

https://github.com/detailyang/awesome-cheatsheet. 看了之后你会觉得,要 充分利用前人的智慧,不要重复造轮子.

一些coursera 数据科学课程清单:

http://blog.csdn.net/datacastle/article/details/52228028

blog; 总结了很多

http://blog.csdn.net/baihuaxiu123?viewmode=listhttp://blog.csdn.net/baihuaxiu123/article/details/69488610

http://www.52caml.com/home/index.htmlML深入浅出 - 总结得很好

关于脑科学的web

BrainFacts.org

results matching ""

    No results matching ""