深度神经网络三大关键点

  • Hyper parameter -- could control parameter W and b
    • Learning Rate
    • #iteration
    • #Hidden layer
    • Hidden Units
    • choice of activiative function
  • 网络架构
    • 不同的问题有不同架构去解决
    • 主要两大类:
      • CNN - 针对图像 ,对称性,平移,旋转
      • RNN - 跟时间序列有关的数据 ,有记忆能力
  • 训练方法
    • 不同的训练方法,对性能的提升有重要的影响
    • 论文:currleculum learning &

What is Deep Learning

Brief Theory:

Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using multiple processing layers, with complex structures or otherwise, composed of multiple non-linear transformations.

深度学习本质

提炼特征(representation)

BP是深度神经网络的基础,没有它,误差没办法收敛。

从数学的角度:多层神经网络的本质就是一个多层复合的函数。

基本原理

DL 比传统的ML的优势在于: data越多,性能越好.

DL 的重新崛起的原因: scale drive DL progress

Data , computation , Algorithms(sigmod , ReLU)

Supervised Learning

Input Output Application Tech Data Type
Home Features Price Real Estate Linear Structured
Ad,user info Click on Ad ?(0 / 1) Online Advertising Standard NN Structured
Image Object(1,....1000) Photo tagging CNN Unstructured
Audio Text transcript Speech Recognition RNN Unstructured
English Chinese Machine translation RNN Unstructured
Image,Radar info Position of other car Autonomous driving Unstructured

https://zhuanlan.zhihu.com/p/26647094

results matching ""

    No results matching ""