Note - Tensorflow Machine Learning Cookbook

Tensorflow work flow

  1. Import or generate datasets

  2. Transfer and normalize data 转换与归一化

    data=tf.nn.batch_norm_with_global_normalization(..)
    
  3. Partition datasets into train,test,validation sets

    程序运行所需要的全局常量

    param learning_rate = 0.01 batch_size=100 iterations=1000

  4. Set algorithm parameters(hyperparameters)

  5. Initialize variables and placeholders

  6. Define Model Structure

    with tf.Session(graph=graph) as session: seesion.run()

  7. Declare the loss function

    #it is very important that it tell us how far off our prediction are from the actual value. loss=tf.reduce_mean(tf.square(y-acture - y-predit))

  8. Initialize and train the model

  9. Evaluate the model

  10. Turn hyperparameters
  11. Deploy/predict new outcome

results matching ""

    No results matching ""